
An Adaptive e-Learning Environment using Distributed Spiking Neural P Systems

Susan Elias, Sarath Chandar A.P
Sri Venkateswara College of Engineering

Sriperumbudur, Chennai, India
susan@svce.ac.in,sarathcse2008@gmail.com

Kamala Krithivasan, S.V. Raghavan
Indian Institute of Technology, Madras

Chennai, India
kamala@iitm.ac.in,svr@cs.iitm.ernet.in

Abstract—The motivation behind the proposed research
work is the need for an innovative e-learning system that can
adapt to the learning capability of every individual. Adaptive
e-learning systems create new opportunities and at the same
time have several research challenges that need to be ad-
dressed. The primary requirement of such adaptive systems
is the need to create and represent adaptable content effec-
tively. This paper presents a membrane computing model
to demonstrate how adaptable content can be represented
and used efficiently. The Spiking Neural P System (SNP) is a
membrane computing model inspired by the way neurons
communicate by means of spikes. This paper proposes
the Distributed Spiking Neural P System (DSNP), a variant
of the existing Distributed P System, that can be used to
represent dynamic and distibuted systems. Temporal rela-
tions captured on a time line during authoring of the e-
course, can be automatically converted into an SNP system
using the algorithm presented in the paper. An algorithm
for the automatic generation of the DSNP from the e-course
compositions represented using a linked list of SNPs is also
presented in the paper along with experimental results to
prove the efficiency and scalability of the proposed model.

Keywords-Adaptive e-Learning; Spiking Neural P Systems;
Multimedia presentation; Membrane Computing.

I. INTRODUCTION AND RELATED WORK

E-Learning systems do exist and are successfully being
utilized by several organizations and universities currently,
but the challenge now is to personalize the content for each
user automatically. Learning strategies and styles need to
be clearly identified and suitably incorporated in the learn-
ing models. A survey of the various learning strategies and
styles presented in [4] and [7] categorize learning strategies
as inquiry based, problem based, ubiquitous learning and
blended learning, while the various learning styles
are classified as diverging, assimilating, converging and
accommodating. These are incorporated into the current
prevalent model of e-Learning which is primarily through
Learning Management Systems (LMSs). The complex-
ity in designing Adaptive e-learning environments is in
personalising the content as different individuals have
different learning patterns, and respond differently to the
same content. This realization of the need for content
adaptation has led to the development of the of the
Adaptive e-Learning Technology [9],[3],[2]. Adaptive be-
haviour in a learning environment can have numerous
manifestations.These have been broadly catogerised [1] as
follows :

1) Adaptive Interactions
2) Adaptive Course Delivery

3) Adaptive Content Discovery and Assembly
4) Adaptive Collaboration Support

The first category refers to adaptations that support user
interaction with the system without modifying the learn-
ing content itself. Adaptive Course delivery refers to
adaptations that are intended to customise a course for
an induvidual learner. The third category refers to the
application of adaptive techniques for the discovery and
assembly of learning content from potentially distributed
sources or repositories. The last category captures adaptive
support in learning processes that involve communica-
tion between multiple persons towards common objec-
tives. Adaptive course delivery deals with personalisation
of content and will be presented here as an applica-
tion of the proposed membrane computing model called
Distributed Spiking Neural P System.

Membrane computing [8] deals with distributed and
parallel computing models by abstracting computing ideas
from the structure and functioning of living cells as
well as from the way cells are organised in tissues.
Membrane systems are also called P systems. The ba-
sic types of P systems are the symbol object P sys-
tem with multi-set rewriting rules, systems with sym-
port/antiport rules, tissue like P systems, neural-like P
system, etc. Several variants have since evolved for var-
ious applications and computing requirments.This paper
is based on the Spiking Neural P Systems [6] and the
Distributed P system [5]. Variants of these existing com-
puting models have been defined and intergrated result-
ing in a new model having very innovative applications.
Spiking Neural P Systems are computing models that are
inspired by the way the neurons communicate by means of
electrical impulses of identical shape, called spikes. Fur-
ther the distributed manner in which the brain processes
information is captured efficiently in the computing model
by the associated rules and their applicability in the model.

The Distributed Spiking Neural P System(DSNP)
proposed in this paper is a variant of
existing Distributed P system [5]. The existing
Distributed P system (dp system) represents a natural
framework for solving problems in a distributed way. The
problem to be solved is split into parts and introduced as
sub-problems to the P systems that are components of the
dP systems. These components solve the sub-problems in
parallel and produce solutions to the initial problem by
communicating and interacting with each other. In this the
basic components of the distributed system will be SNP

systems and hence the proposed model is refered to as
Distributed Spiking Neural P System (DSNP). This paper
presents an application of the proposed DNSP System by
modeling an Adaptive e-Learning Environment using it.

II. MOTIVATION AND PROBLEM DEFINITION

Spiking Neural P Systems and Distributed P Systems
were found to be models that were suitable for inte-
gration and for application in dynamic and real-time
environments. The need for a model that could respond
to changes in the environment and adapt itself suitably
is the motivation for the research work presented in this
paper. Mathematical models of computation aid in the
effective analysis and verification and hence an appropriate
model namely the Spiking Neural P System was identi-
fied and modified suitably for the challenging application
of Adaptive e-Learning which inherently involves a lot of
dynamism.

III. PROPOSED MODELS AND TERMINOLOGY

In this section the proposed
Distributed Spiking Neural P System will be described
and its features will be illustrated. A variant of
the existing Spiking Neural P System has been used
innovatively as the basic component of the proposed
model. The formal definition of the proposed variant
is presented in this section followed by the proposed
Distributed Spiking Neural P System.

A. Variant of the Spiking Neural P System

Spiking Neural P Systems were introduced in [6] as
a computationally complete model both in generating
and accepting modes. Here a variant of the basic
system that has distinct input neurons and a localized
environment has been proposed. The proposed variant of
the spiking neural P system (in short, an SNP System),
of degree m ≥ 1, is of the form

π = (O, σ1, ...σm, syn, ii, io, ac) (1)

where:

1) O = {a} is the singleton alphabet (a is called spike);
2) σ1, ...σm are neurons of the form

σi = (ni, Ri), 1 ≤ i ≤ m,
where:

a) ni ≥ 1 is the initial number of spikes contained
by the cell;

b) Ri is a finite set of rules of the following two
forms:
i) E/ar → a;t, where E is a regular expres-

sion over O, r ≥ 1, and t ≥ 0;
ii) as→ λ, for some s ≥ 1, with the restriction

that as does not belong to any rule of type
(i) from Ri

3) syn ⊆ {1,2,..m} X {1,2,..m} with (i,i) /∈ syn for 1
≤ i ≤ m (synapses among cells);

�
�
�
�
�
�
�
�

�
�
�
�

U

�

'

&

$

%
ak → a; 1

a2k−1

a+/a→ a; 2

a
a→ a; 0

- -
1

2

3

Figure 1. Illustration of the proposed variant of SNP System

4) ii ∈ {1, 2, ..m} indicates the input neuron which
can obtain spikes from the local environment;

5) io ∈ {1, 2, ..m} indicates the output neuron which
releases the spikes to the environment;

6) ac is the initial number of spikes present in the local
environment.

The rules of type (i) are called firing rules also referred
to as spiking rules. The contents of the neuron (the number
of spikes present in it) is indicated by a regular expression
E. When the neuron is fired, r spikes are consumed and
it produces a spike which will be sent to other connected
neurons after t time units. The two important actions that
can take place in a single step are getting fired and spiking.
A neuron gets fired while using a rule E/ar → a; t, and
this is possible only if the neuron contains n spikes such
that an ∈ L(E) and n ≥ r. This means that the regular
expression E represents exactly the contents of the neuron.
The use of a rule E/ar → a; t in a step q means firing in
step q and spiking in step q+ t. That is if t = 0, then the
spike is produced immediately, in the same step when the
rule is used. If t = 1, then the spike will leave the neuron
in the next step, and so on. In the interval between using
the rule and releasing the spike, the neuron is assumed
closed, hence it cannot receive further spikes nor spike
again.

The rules of type (ii) are called forgetting rules, s spikes
are simply removed from the neuron (forgetten) when
applying as → λ. Like in the case of spiking rules, the left
hand side of a forgetting rule must represent the contents
of the neuron, that is, as → λ is applied only if the
neuron contains exactly s spikes. The input neuron will
take the available spikes from the environment and the
output neuron will spike the spikes to the environment.
The SNP Systems are intended here to be used primarily
for controlling and communicating to achieve a centralized
collaborative goal.

Illustration: Consider a SNP system Π1 having 3 neu-
rons, with labels 1,2 and 3 (Figure 1). Neuron 1 is the
input neuron and neuron 3 is the output neuron. In the
initial configuration we have spikes in neurons 1 and 3,
and these neurons fire in the first step. The spike of neuron
3 exits the system. After firing, neuron 3 remains empty,
so it cannot spike again before receiving a new spike. In
turn, neuron 2 cannot fire untill collecting exactly k spikes.

After firing neuron 1 will be closed/blocked for the next
2 steps; in the third step it will release its spike, sending
it to neuron 2, and in step 3 will fire again. Thus, neuron
1 fires in every third step, consuming one of the spikes;
any number n ≥ 1 of spikes in covered by the regular
expression a+. In the step 3k, neuron 2 will receive the
kth spike emitted by neuron 1, hence in the next moment,
3k + 1, it will fire. The delay between firing and spiking
is one time unit for neuron 2, hence its spike will reach
neuron 3 in step 3k + 2, meaning that neuron 3 spikes
again in step 3k + 3. Therefore, the interval between two
spikes of neuron 3 will be (3k + 3)− 1 = 3k + 2. There
will be two spikes after this in the environment and k− 1
spikes in neuron 1. The two spikes in the environment
will be used by the neuron 1 and after next 3k + 2 steps,
neuron 3 again spikes. Now neuron 1 will have only three
spikes and the execution halts.

B. Distributed Spiking Neural P System
Distributed Neural P Systems were introduced in

[5] in order to be able to explicitly handle the in-
put in a distributed way. In [5] a distributed archi-
tecture based on cell like P Systems with their skin
membranes communicating through channels rules as in
a tissue-like P system, has been presented. This paper
proposes a variant of the Distributed P Systems called
Distributed Spiking Neural P System (in short as DSNP
system) where n SNP Systems work independently on
their problems, and communicate with each other using the
associated skin-to-skin rules. In the proposed computing
model one of the SNP systems is taken as a centralized
SNP System which primarily monitors and controls the
activities of the other SNP systems in the distributed
environment.

A Distributed Spiking Neural P System is of the form

∆ = (O, π1, ...πn, πc, R) (2)

where:
1) O is an alphabet of objects.
2) π1...πn are SNP systems with O as the alphabet

of objects and skin membranes(local environment)
labelled with S1, ..Sn respectively.

3) πc is the centralized control SNP system with skin
membrane Sc.

4) R is a finite set of rules of the form (Si, u/v, Sj),
where 1 ≤ i, j ≤ n, i 6= j and u,v ∈ O∗ with uv 6=
λ; |uv| is called the weight of the rule (Si, u/v, Sj).

The systems π1...πn are called components of the
system ∆ and the rules in R are called inter-component
communication rules. Rules in R are of form (Si, u/v, Sj)
meaning that u number of spikes are taken from skin Si

and placed as v number of spikes in Sj .
As an illustration of the definition, consider the follow-

ing simple example.

∆1 = ({a}, π1, π2, πc, R)

R = {(S1, a
2/a4, S2), (Sc, a/a

2, S1),
(Sc, a

2/a4, S2), (S2, a
8/a2, S1)}

This DSNP System consists of two SNP Systems π1,π2 and
a centralized SNP System πc. There are four communi-
cation rules. For example when there are two spikes in
the local environment of π1, it is transfered to the local
environment of π2 as 4 spikes and so on.

IV. PROPOSED ADAPTIVE E-LEARNING MODEL

A. Design of the model

Each module in an e-course will have a layout that
represents the presentation on a timeline. Given a timeline,
a Spiking Neural P System can be created for it by running
Alogirithm 1 on the input time-line. After the modules are
ordered and composed into an e-course, it can be converted
into a Distributed Spiking Neural P System by running
Algorithm 2 over the linked list of modules selected for
the e-course. This DSNP System will have a centralized
component which will monitor and control the order of
execution.The temporal layout of the presentation of the
course is defined as

L0 = {SP1, SP2, SP3....., SPn} (3)

where SPi = (ti, Bi, Ei), n represents the number of
synchronization points in the presentation, Bi is the set of
objects that start at time ti, and Ei is the set of objects
terminating at time ti. For example consider the following
time-line or temporal layout

L0 = {{(0, {A,F}, {}), (60, {G}, {A}),
(300, {B}, {}), (310, {}, {F,B}),
(900, {C}, {}), (1200, {}, {C})}

In this layout, A and F starts at 0 seconds; G starts at 60
seconds while A ends at the same time; B starts at 300
seconds; at 310 seconds F and B ends; C starts at 900
seconds and it ends at 1200 seconds.

B. Proposed algorithms

Algorithm 1 will convert the given time-line into a
SNP System. Line 1 will set O to be a singleton alphabet
set {a}. The for loop from line 2 to 27 will convert the
time-line into a SNP System. x is the id of that particular
module and m will be assigned a value greater than the id
of all modules. Input neurons will be created in lines 4 to
14 with appropriate forgetting rules which will be used in
controlling the order of presentation. Lines 15 to 25 will
create the remaining neurons and the output neuron is set
in line 27. This algorithm can be used to convert all the
modules into corresponding SNP Systems.

Algorithm 2 will convert a linked list of modules which
are in the form of SNP Systems into a DSNP System. O
is set to a singleton alphabet set {a} in line 1. The for
loop in lines 2-5 will add the SNP Systems present in the
linked list to the DSNP System and corresponding skin-to-
skin communication rules are added to maintain the link.
In rule in line 4, u will be set to a and v to aj . Lines 14-17
will generate communication rules that will be used by πc

to control the system. The rule in line 15 can be used to
initiate any system while the rule in line 16 will be used
for broadcasting stop message to all the modules.

Algorithm 1: The algorithm for converting timeline to
SNP

Input: Timeline L0 = (SP0, SP1, ...SPn), x
Output: SNP π = (O, σ1,, σm, syn, ii, io, ac)
Set O ← {a}1

for each SPi in T do2

ac ← 03

if i==0 then4

for each element in Bi do5

ni ← 06

R← R ∪ {ax → a; ti+1}7

R← R ∪ {am → λ}8

R← R ∪ {am+x → λ}9

R← R ∪ {am+1 → λ}10

π ← π ∪ {σi = (ni, Ri)}11

ii ← ii ∪ {σi}12

end13

end14

else15

for each element in Bi do16

ni ← 017

e← |Ei|18

R← R ∪ {ae → a; ti+1}19

π ← π ∪ {σi = (ni, Ri)}20

for each element σk in Ei do21

syn← syn ∪ {(k, i)}22

end23

end24

end25

end26

io ← {σn}27

Algorithm 2: The algorithm for converting linked list
of modules to DSNP system

Input: Linked List of modules L =
(M1,M2,M3...,Mn)

Output: DSNP system ∆ = (O, π1,, πn, πc, R)
O ← {a}1

for each link from πi to πj in L do2

∆← ∆ ∪ {πi, πj}3

R← R ∪ {(Si, u/v, Sj)}4

end5

Oc ← {a}6

ii ← 17

io ← 18

n1 ← 09

ac← 010

R1 ← R1 ∪ {am → am; 0}11

πc ← πc ∪ {O, σ1 = (n1, R1), ii, io, ac}12

∆← ∆ ∪ {πc}13

for each πjin∆− {πc} do14

R← R ∪ {(Sc, j/j, Sj)}15

R← R ∪ {(Sc,m/m, Sj)}16

end17

C. Illustration

Figure 2. Module 2: An Illustration

Figure 3. DSN P System: An Illustration

Consider an e-course with 4 modules. Let the order
of presentation be 1,3,2 and 4. All the modules can be
converted into SNP systems using Algorithm 1. Figure 2
is an illustration of the SNP System that represents module
2. In this illustration Module 2 has been designed to have
4 sub-modules. After the first sub-module is presented the
sub-modules 2 and 3 commence their presentation and
finally sub-module 4 is triggered when 2 and 3 complete.
The delay d expressed in the rule of the form ar → a; d
represents the duration of presentation of the associated
e-learning sub-module. Figure 3 is an illustration of the
DNSP System where all the modules are composed into a
course by grouping them and a centralized SNP systems
created to control the order of execution, Skin rules are
written to communicate from one SNP system to another
SNP system. Now let us assume that module 3 in the
DNSP System is currently being presented to a learner.

After the execution of module 3 the module 2 will be
executed if the presentation is uninterrupted by either a
user interaction or by dynamic need for adaptation. To
change the predefined order of presentation, for instance
to present module 4 instead of 2, a fixed number of
a’s say 100 a’s can be sent to all SNP systems from
the central SNP system. Each SNP system can then use
their forgetting rule and the presentation can be paused.
Following this 4 a’s can be sent to SNP system 4 so that
it can be trigged and presented.

V. EXPERIMENTAL RESULTS

The time taken to modify the learning path is the
response time of the system. In the proposed model,
adaption is carried out by using a fixed number of com-
munication rules and hence the time to adapt will be
resonably low. We simulated the Distributed SNP System
and calculated the mean response time required by the
system for adaptation. Experiments were conducted using
Fedora OS, CPU: Intel(R) Core(TM) 2, RAM: 4 Giga
Byte using the programming language C. The program
was compiled and run in the Open MPI environment. As
the number of modules used in the course composition
was increased in a linear manner the response time also
increased linearly. The results are presented in the form
of a graph in Figure 4. By using the proposed distributed
model the Adaptive e-learning environments will appear
to have a seamless presentation of personalised content.

Figure 4. Effect of varying the number of learning materials

VI. CONCLUSION

This paper presents a membrane computing model
referred to as Distributed Spiking Neural P Systems that
can be used to represent dynamic and distributed systems
effectively. The basic component of this distributed model
is a variant of the existing Spiking Neural P Systems. The
model includes a central monitoring feature and local en-
vironments for each component in the distributed system.
These additional features incorporated in the proposed

membrane computing model makes it functionally suitable
for applications in real time and dynamic environments,
as illustrated by the challenging application of adaptive
e-learning.

REFERENCES

[1] P. Alexandros and L.-R. Susanne. Adaptive learning envi-
ronments and e-learning standards. Electronic Journal on
e-Learning, 2:181–194, February 2004.

[2] M. Alian and M. AL-Akhras. Adalearn: an adaptive e-
learning environment. In Proceedings of the 1st Interna-
tional Conference on Intelligent Semantic Web-Services and
Applications, ISWSA ’10, pages 21:1–21:7, 2010.

[3] P. Brusilovsky. Knowledgetree: a distributed architecture for
adaptive e-learning. In Proceedings of the 13th international
World Wide Web conference on Alternate track papers &
posters, WWW Alt. ’04, pages 104–113, 2004.

[4] D. E. Dekson and E. S. M. Suresh. Adaptive e-learning tech-
niques in the development of teaching electronic portfolios -
a survey. International Journal of Engineering Science and
Technology, 2:4175–4181, 2010.

[5] P. Gheorghe and P.-j. Mario J. Solving problems in a
distributed way in membrane computing : dp systems. Inter-
national Journal of Computers, Communication and Control,
5:238–250, 2010.

[6] M. Ionescu, G. Păun, and T. Yokomori. Spiking neural p
systems. Fundam. Inf., 71:279–308, February 2006.

[7] C. Mulwa, S. Lawless, M. Sharp, I. Arnedillo-Sanchez,
and V. Wade. Adaptive educational hypermedia systems
in technology enhanced learning: a literature review. In
Proceedings of the 2010 ACM conference on Information
technology education, SIGITE ’10, pages 73–84, 2010.

[8] G. Păun. Computing with membranes. J. Comput. Syst. Sci.,
61:108–143, August 2000.

[9] L. Razzaq and N. T. Heffernan. Towards designing a user-
adaptive web-based e-learning system. In CHI ’08 extended
abstracts on Human factors in computing systems, pages
3525–3530, New York, NY, USA, 2008. ACM.

