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Abstract

Resource fortunate languages such as English, French, Chinese, etc. clearly over-
shadow many not-so-fortunate languages in terms of both (i) the number of NLP
tools available and (ii) the quality of these tools. One solution to alleviate this
problem is to collect more annotated resources for these languages, but this is of-
ten not feasible due to the cost, time, and effort involved. A more feasible option is
to use cross language learning which aims to use annotated resources available in
some resource fortunate language to bring NLP capability to a less fortunate lan-
guage. In this work, we propose such a cross language learning framework which
has its origins in deep learning. The idea is to learn a shared deep representa-
tion for two languages (say, L1 and L2) to represent data from the two languages
in a common space. Once such a shared representation is learned training data
available in L1 can be projected to this space and the resulting representation can
be used for training a model. Similarly, test data from L2 can be projected to
this space and the resulting representation can be fed to the trained model for in-
ference. We evaluate the proposed framework on two tasks, viz., cross language
sentiment analysis and cross language transliteration equivalence. The experimen-
tal results show that the performance of the proposed framework is comparable to
state-of-the-art approaches for these tasks.

1 Introduction

Languages show different levels of maturity with respect to their Natural Language Processing
(NLP) capabilities. This maturity in terms of the quality and number of NLP tools available for
a given language is directly proportional to the amount of annotated resources available for that
language. As a result, languages such as English which have plenty of annotated resources at their
disposal are better equipped than other languages which are not so fortunate in terms of annotated
resources. For example, high quality pos taggers, parsers, sentiment analyzers are already available
for English but this is not the case for many other languages such as Hindi, Marathi, Bodo, Farsi,
Urdu, etc. This situation was acceptable in the past when only a few languages dominated the digital
content available online and elsewhere. However, the ever increasing number of languages on the
web today has made it important to accurately process natural language data in such less fortunate
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languages also. An obvious solution to this problem is to improve the annotated inventory of these
languages but the involved cost, time, and effort act as a natural deterrent to this.

To overcome this problem of resource scarcity, recently there as been a lot of interest in reusing
resources from a resource fortunate language to develop NLP capabilities in a resource deprived
language [25, 6, 14, 23, 17, 15, 13, 10]. One way of achieving this is to project parameters learned
from the annotated data of one language to another language. These projections are enabled by
a bilingual resource such as a Machine Translation tool, a parallel corpus1 or a bilingual dictio-
nary. Alternatively, one can exploit such bilingual resources to learn a shared representation for
two languages. For example, [21] uses Canonical Correlation Analysis [9] to learn a common
representation for names in two languages using a bilingual parallel list of names.

To further illustrate the above idea of reusing resources, we consider the task of Cross Language
Sentiment Analysis [4, 24] which uses training data available in one language to develop a senti-
ment classifier for another language. The idea is to first build a model M for predicting sentiment
polarity using the training data available in language L1. Such a model can obviously not be used
for predicting the sentiment polarity of a document belonging to another language (say L2) due to
the difference in the vocabulary (and hence the representation of documents) in the two languages.
To circumvent this problem, the test document in L2 is translated to L1 using a machine translation
system and then the model M is applied to this translated document. The Machine Translation sys-
tem here enables the two documents to be represented in the same space (i.e., the space comprising
of the vocabulary of L1). In this work, we propose a framework for representing entities (words,
sentences, documents, etc.) from two languages in a common space using concepts from deep learn-
ing. This can be looked upon as an alternative to using Machine Translation for enabling a shared
representation for two languages.

Our work uses deep learning (specifically, auto-encoders) to learn a shared representation for two
languages. The model learns from a list of parallel entities in the two languages. These entities can
either be words, sentences or documents depending on the task at hand. The objective function is
designed to minimize the distance between the projections of parallel entities in this common space.
For example, if the model is trained using a list of parallel sentences in the two languages, then
the objective is to ensures that if sentence SL1

1 is a translation of SL2
1 then the distance between

their projections in the common space is minimum. Once such a common representation is learned,
entities from the two languages can be projected to this common space and model training and
inference can then happen in this common space. A salient feature of the proposed model when
compared to CCA is that in addition to learning a shared representation, it also has the ability to
predict the representation of an entity in the target language given the representation of its parallel
entity in the source language (as explained later in section 3).

We evaluate the proposed approach on the task of Cross Language Sentiment Analysis and show
that its performance is comparable to state-of-the-art approaches. Further, to evaluate whether the
proposed model indeed ensures that the projections of parallel entities have a high similarity we use
it for the task of transliteration mining which aims at finding parallel transliteration pairs across two
languages. Note that there is no cross language learning in this task but the aim is to just show that a
pair of words in L1 and L2 which are transliterations of each other get projected close to each other.
The main contributions of our work can be summarized as follows:

• We propose a novel variant of auto-encoder called predictive auto-encoder, that learns the
shared representation for two different languages.

• The model can also predict the features in one language, given the features in another
language. In some sense, the model does contextual translation without using any machine
translation tool.

• The proposed framework is language-independent and task-independent. It can be applied
to any task such as cross language sentiment analysis, cross language document classifica-
tion, and so on.

• Apart from these contributions, we are also introducing a new benchmark dataset for cross
language sentiment analysis between English and French.

1For example, a set of English documents with their corresponding French translations form a English-
French parallel corpus
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The remainder of this paper is organized as follows. In Section 2 we briefly discuss some related
work . In section 3 we introduce the objective function used for our predictive encoder and compare
it with the objective function of an auto-encoder. In section 4, we describe our overall approach for
training and testing. In sections 5 and 6, we discuss the empirical performance of our approach on
the task of Cross Language Sentiment Analysis and Transliteration Mining respectively. Finally, in
section 7, we present concluding remarks and suggest possible future work.

2 Related Work

We borrow ideas from the vast literature on auto-encoders and hence its necessary to briefly discuss
auto-encoders and their variants. An auto-encoder [20] is a three layer neural network containing
an input layer, a hidden layer and an output layer which reconstructs the input. Typically, the aim is
to learn a compact representation in the hidden layer such that the reconstruction error is minimum.
This idea is further extended in [2] to design a deep neural network by stacking multiple auto-
encoders and training them greedily. Similar greedy layer-wise training to design a deep neural
network using Restricted Boltzman Machines was proposed in [8]. Both the methods consist of an
unsupervised pre-training phase followed by supervised fine-tuning phase.

Several variants to the basic auto-encoder have been proposed. Denoising auto-encoder [22] is one
such variant where the input is corrupted before feeding it to the auto-encoder and the goal is to
reconstruct the clean input. This acts like a regularization for the auto-encoder. Following this,
multiple regularization techniques for auto-encoders were proposed. [7] proposed saturating auto-
encoder that explicitly limits the auto-encoder’s ability to reconstruct the inputs which are not near
the data manifold. [18] propose a different regularization criteria which favours mappings that are
more strongly contracting at the training samples. [19] proposes a novel variant of auto-encoder
called Discriminative Recurrent Sparse Auto-encoders, which allows sharing parameters between
successive layers of a deep network.

Most of the work mentioned above focuses on single view input whereas we are interested in multi-
view input where two different views of the data are available (for example a sentence and its trans-
lation in another language). In this context, the work of [16] is very closely related to our work and
is in fact the inspiration for our work. They propose a methodology to train a network where two
views of the data (audio and video in their case) are available. The goal is two fold: (i) to learn a
common representation for audio and video data and (ii) to reproduce audio (or video) data given
the corresponding video (or audio) data. Although our ideas are very similar, we use a different
objective function than the one used in their work (as explained in section 3). Given that our aim is
to learn a shared representation for two views of the data, it is also very closely related to Canonical
Correlation Analysis (CCA) [9]. However, one difference is that CCA learns a common repre-
sentation only, whereas, our model (in addition) can also predict the target view given the source
view.

3 Predictive Auto-encoder

At the heart of our cross language learning framework, lies a novel Predictive Auto-encoder (PAE)
which learns a shared representation for entities in two languages. As input it takes a parallel list of
entities in L1 and L2. For the purpose of illustration, we will consider a list of parallel documents in
the two languages. A document i in language L1 can be represented by a feature vector pi ∈ Rd1 .
In the simplest case each feature could be a binary feature indicating the absence or presence of a
word in the document (in this case d1 would simply be the size of the vocabulary of L1). Similarly
the corresponding parallel document in L2 can be represented as a feature vector qi ∈ Rd2 . Now
consider that we are given a sample Z = {(pi, qi)}ni=1 containing n such parallel documents. For a
given pair (pi, qi) we construct two vectors, z1i , z

2
i ∈ Rd1+d2 such that z1i = (pi ∈ Rd1 , 0 ∈ Rd2)

and z2i = (0 ∈ Rd1 , qi ∈ Rd2). z1i is thus an embedding of pi in a d1 + d2 dimensional space such
that the values of the last d2 dimensions are set to 0. Similarly, z2i is an embedding of qi in a d1+d2
dimensional space such that the values of the first d1 dimensions are set to 0. The aim is to learn a
mapping function f : Rd1+d2 → Rd such that f(z1i ) ∈ Rd is highly correlated with f(z2i ) ∈ Rd. In
other words the aim is to maximize the correlation between f((pi,0)) and f((0, qi)) which ensures
that embeddings of pi and qi in this d dimensional space are close to each other.
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To achieve this goal, we propose a variant of auto-encoders called Predictive Auto-encoder (PAE).
Akin to an auto-encoder, our PAE also consists of an encoder followed by a decoder. The encoder is
a function f that maps an input z ∈ Rd1+d2 to a hidden representation f(z) ∈ Rd. It can be defined
as

h = f(z) = sf (W · z + bh) (1)

where sf is a nonlinear activation function such as sigmoid function.

sigmoid(z) =
1

1 + e−z
(2)

The parameters of the encoder are a weight matrix W ∈ Rd x (d1+d2) and a bias vector bh ∈ Rd.

The decoder function g maps the hidden representation h back to a reconstruction y such that,

y = g(h) = sg(W
′ · h+ by) (3)

where sg is the decoder’s activation function (typically the identity function or a sigmoid function).
The decoder’s parameters are the matrix W ′ ∈ R(d1+d2) x d and a bias vector by in Rdx . In general,
W ′ = WT .

We now describe the process of training a PAE given a sample Z = {(pi, qi)}ni=1. From each
input pair we construct three vectors: zi = (pi, qi) and z1i and z2i as defined earlier. zi is simply
a concatenation of the two views of the data and acts as a composite view of the data. Given n
such triplets (zi, z1i , z2i ), the PAE is trained to learn parameters θ = {W, bh, by} which minimize the
following objective function:

JPAE(θ) =

n∑
i=1

L(zi, g(f(z
1
i )) +

n∑
i=1

L(zi, g(f(z
2
i ))

+

n∑
i=1

L(zi, g(f(zi))− α
n∑

i=1

cor(f(z1i ), f(z
2
i ))

(4)

where L is the reconstruction error and α is the scaling parameter used to scale the correlation term
to the range of squared error terms. Lets understand the motivation behind each term in the objective
function. The first term ensures that the the error of reconstructing the composite view zi = (pi, qi)
given only one view z1i = (pi, 0) is minimum. In other words, this ensures that the model has a
predictive power and can predict the second view (qi) given only the first view(pi). The motivation
behind the second term is similar except that the roles of pi and qi are reversed. The third term is the
conventional auto-encoder error and helps to learn a compact representation of the composite view.
Finally, the fourth term (with the negative sign) ensures that the hidden representations of the two
parallel views are highly correlated. We contrast our approach with the approach described in [16]
which uses the following objective function to train an auto-encoder using multiview data :

JAE(θ) =

n∑
i=1

L(zi, g(f(zi)) (5)

where L is the reconstruction error. Similar to our approach, they also construct the three vectors
(zi, z1i , z2i ) from each input pair (pi, qi). However, unlike our approach these 3 vectors are fed
independently to the network during training. In contrast, in our approach these vectors are not
treated independently as the objective function tries to maximize the correlation between f(z1i ) and
f(z2i ). Note that (5) lacks an explicit term that links the three inputs together. In our approach the
parameter updates happen only after all the 3 versions of the input are passed through the network.
While this introduces a tighter coupling between the 3 versions of the input, adding the explicit
correlation term directly targets the hidden representation learnt. This also leads to better empirical
performance as described in Section 6. Even though the work in [16] could conceptually be used
for prediction of one language given the other, the authors report that the performance of the system
was poor for audio-video shared representation learning. Adding the correlation term to the error
and the joint training enables our system to achieve very good performance.
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4 Overall process for Cross Language Learning

In this section, we describe the overall process for Cross Language Learning (CLL) framework
which uses the predictive auto-encoder described above. The proposed approach has four phases as
described below.

1. Language specific representation: In this phase, we are interested in obtaining a language
specific representation (pi or qi) for an entity in L1 or L2 respectively. As mentioned earlier, if
the entity is a document this representation can be as simple as a set of binary features indicating
the presence or absence of a n-gram in the vocabulary of the language. Alternatively, if the entity
is a word then each feature could indicate the presence or absence of any n-gram character in the
language or some such suitable representation. Not surprisingly, if we use the raw representation in
phase 2 directly, we obtain very poor performance. This was confirmed in preliminary experiments
and hence we adopted this additional phase. We train a k-layered stacked auto-encoder to learn an
abstract representation (Figure1(a)) for a given entity using its raw representation (n-gram words,
n-gram characters, co-occurrence vectors, etc.).

(a) Language specific representa-
tion

(b) Shared Representation Learn-
ing (SRL)

(c) Source Langauge Training (d) Target Langauge Testing

Figure 1: Proposed framework

2. Shared Representation Learning(SRL): For the next phase we need a pair of parallel entities
in L1 and L2 wherein the representation pi (or qi) of an entity in L1 (or L2) is obtained using
unsupervised feature learning as described above. A sample Z = {(pi, qi)}ni=1 of such parallel
entities is then passed to the PAE to learn a shared representation. This process is illustrated in
Figure1(b).

3. Source Language Training: Now we come to the crux of cross language training where the aim
is to train a model using the data available in L1 and apply this model to data from L2. Lets assume
we have a sampleD = {xi, yi}ki=1 of training data available in L1 where xi is the input and yi is the
label. For each xi we first learn the abstract representation pi in L1 using the auto-encoder in phase
1. Next for each pi we obtain the compact representation f((pi,0)) = f(z1i ) using the PAE trained
in phase 2. Effectively, we have projected the original input xi to a space in which entities from L2

can also be represented. Thus, a model trained using this projected data {f(z1i )}ni=1 can be applied
to entities belonging to L2 after projecting them to this space. This process of training is illustrated
in Figure1(c).

4. Target Language Testing: Finally, the model trained above is applied to test data from L2 by
first projecting it to the common space as illustrated in Figure1(d). For each xi, we first learn the
abstract representation qi in L2 using the auto-encoder in phase 1. Next for each qi we obtain the
compact representation f((0, qi)) = f(z2i ) using the PAE trained in phase 2. Now use the classifier
to classify the test instance.
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5 Empirical Evaluation: Cross Language Sentiment Analysis

We evaluate the performance of the proposed framework on the task of Cross Language Sentiment
Analysis where the goal is to detect the sentiment polarity (positive or negative) of a document in
language L2 using training data available in language L1. For the purpose of this evaluation, we
created a Multilingual Dataset for Sentiment Analysis similar to the Multi-domain dataset used in
[3]. Specifically, we collected reviews for English and French DVDs from amazon 2. These reviews
are accompanied with a reviewer rating on a scale of 1 to 5 (5 indicating excellent and 1 indicating
poor). We considered reviews with ratings 4 and 5 to be positive and reviews with ratings 1 and 2 to
be negative. The details of the dataset are provided in Table 1.

Language Training instances Test instances
Positive Negative Neutral Positive Negative Neutral

English 20000 20000 10000 2000 2000 -
French 20000 20000 10000 2000 2000 -

Table 1: Multilingual Sentiment Dataset Description

The dataset will be made publicly available and will hopefully help in furthering the research on
multilingual sentiment analysis.

5.1 Experimental Setup

As mentioned in section 4, our approach has four phases (i) language specific representation (ii)
shared representation learning (iii) task specific supervised training and (iv) cross language testing.
We describe the procedure followed for executing each of these phases.

For monolingual deep learning, we used 50,000 training documents for each language from the
Multilingual Dataset. Note that we do not use parallel corpora in this phase. We chose an arbitrary
set of documents in each language drawn from the same domain as the test documents. This is
to ensure that there is a strong overlap in the vocabulary of the corpus used in phases 1 and 2. We
used a five layered stacked auto-encoder for this phase. To feed the first layer of the auto-encoder we
converted the documents to a feature vector comprising of the top 40,000 unigrams in the vocabulary.
In subsequent layers of the stacked auto-encoder, we reduced the number of hidden neurons from
10,000 to 5000 to 2500 to 500. The representation from the last layer consisting of 500 hidden
neurons is used as the deep representation of a given document.

Next, for the second phase, we need English-French parallel documents. For this, we translated
the 50,000 English documents used above to French using a state of the art Machine Translation
Tool [1] thus creating a English French parallel corpus. We then obtain the language specific
deep representations for each of these documents and then use these parallel deep representations
to train the predictive auto-encoder. In the third phase, we need to train a sentiment classifier using
40K English training data. Instead of using a simple unigram based feature representation for the
documents we first obtain the language specific deep representation of these documents and then
project this representation into the common space using the predictive auto-encoder. We then train
a classifier using this shared representation of the English documents as the feature vector. Finally,
we take the test documents from French, repeat the above process of projecting them to the common
space and then feed them to the trained model for inference.

We compared the above approach with some standard approaches for CLSA. The empirical upper
bound for the performance is obtained by using a classifier trained on French training data. In
addition, we consider two baselines: (i) a classifier trained using English data and tested on French
data after translating it to English using a MT system and (ii) a classifier trained after translating the
training instances into French and then tested on French instances. For the two baseline approaches
we use a ungiram feature representation. For all the methods we use SVM [5] as the classifier. The
accuracy of the different approaches are reported in Table 2.

2www.amazon.com and www.amazon.fr
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S.No Approach Train data Test data Accuracy
1 Self Training Fr Fr 86.1%
2 Translate and Train En - translated to Fr Fr 63.4%
3 Translate and Test En Fr - translated to En 65.15%
4 Common Representation Learning En Fr 72%

Table 2: Accuracy of different approaches for Cross Language Sentiment Analysis

6 Empirical Evaluation: Transliteration Equivalence

In the previous section, we showed the application of our model in a cross language learning setup.
In addition to cross language learning, our model can also be used for the task of determining bilin-
gual equivalence. As a case study, we consider the task of determining transliteration equivalence
of named entities wherein given a word u from language L1 and a word v from language L2 the
goal is to determine whether u and v are transliterations of each other. Several approaches have
been proposed for this task and the one most related to our work is an approach which uses CCA for
determining transliteration equivalence. We compare our results with this approach. Through this
case study, we aim to answer the following questions:

1. Given source language view can the target language view be reconstructed?

2. Do equivalent entities have similar common representations ?

3. What is the effect of number of features in the shared representation ?

6.1 Experimental Setup

Once again we describe the procedure used for different phase of our approach. For obtaining lan-
guage specific representation, we collected 50,000 words from English and Hindi Wikipedia titles.
We used a k layered stacked auto-encoder for learning a language specific representation. To feed
the bottom most layer in the auto-encoder we converted the words to a character-bigram based fea-
ture vector. There were 651 character-bigram features in English and 2860 character-bigram features
in Hindi. In the final layer we retained 200 hidden neurons and used this as the language specific
deep representation for the two languages. Next, for shared representation learning, we used 15,000
transliteration pairs from NEWS 2009 training set [12] to train the network. As before, we first
obtain a language specific representation for each word in the pair and then use these parallel deep
representations for training a predictive auto-encoder. Testing was done on the standard NEWS10
transliteration equivalence testset [11]. We report the findings of our experiments and in the process
answer the questions raised above.

6.2 Reconstructing target language view

A useful functionality of the predictive auto-encoder is that given only source language features it
can predict target language features. In this subsection, we provide a quantitative evaluation of how
good these predictions are and also highlight the contribution of each term in the objective function.
For this we trained the auto-encoder using different combinations of the terms in the objective func-
tion and noted the average squared error in the reconstruction of the target features, given the source
features (see Table 4). For the remainder of this section, we use the naming convention given in
Table 3 for referring to different terms in the objective functions.

Name Term in Objective Function
f1 L(zi, g(f(z

1
i ))

f2 L(zi, g(f(z
2
i ))

f3 L(zi, g(f(zi))
f4 cor(f(z1i ), f(z

2
i ))

Table 3: Naming Convention for terms in Objective Function
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S.No Objective Function Average Reconstruction Error
1 f1 + f2 3.439
2 f1 + f2 + f3 3.457
3 f1 + f2 + f3 + f4 3.396

Table 4: Reconstruction error for various error functions

6.3 Identifying equivalent entities

Next, we are interested in determining whether equivalent entities (transliteration pairs in this case)
have very similar representations in the common space. For this, we use NEWS10 English-Hindi
transliteration equivalence test set which contains 5468 word pairs out of which 982 are transliter-
ation pairs and the remaining are not. For every word pair (u, v) we obtain a representations for u
and v by passing them through the models trained in phase 1 and 2. We then calculate the cosine
similarity between these representations of u and v. If the cosine similarity is above a threshold we
mark the word pair as equivalent. We compare our approach with CCA which also learns a shared
representation using the same training data that we used. The results of this experiment are reported
in Table 5. In this task, CCA performs better than PAE. We suspect that CCA performs better since
(a) we also try to ensure that the reconstruction error is minimized and (b) more importantly CCA
minimizes correlation between the abstract features. But further study is needed to verify these
hypothesis.

S.No Model Precision Recall F1-Measure
1 CCA 0.863 0.917 0.889
2 f1 + f2 0.702 0.848 0.768
3 f1 + f2 + f3 0.649 0.831 0.729
4 PAE (Our Model) 0.79 0.844 0.815

Table 5: Performance on NEWS10 En-Hi Transliteration Mining Dataset

6.4 Effect of number of features in the common representation

To answer this question we vary the number of neurons in the hidden layer while learning the shared
representation. The results of this experiment are reported in Table 6. It was observed that the per-
formance decreases as we increase the number of features. Also there is a decrease in performance
when there are very few features. This requires further analysis of the functioning of PAE.

No. of nodes Precision Recall F1-measure
10 0.664 0.873 0.754
20 0.79 0.844 0.815
30 0.739 0.861 0.795
40 0.801 0.779 0.790
50 0.708 0.869 0.780

Table 6: Effect of number of features

7 Conclusion

We proposed a Predictive auto-encoder for learning a shared representation for cross-language tasks.
In addition to learning a shared representation, the proposed model is also capable of predicting one
view given the other. We evaluated the approach on two NLP tasks viz., Cross Language Sentiment
Analysis and Transliteration Equivalence. While the initial results are encouraging further investiga-
tion is needed to beat state-of-the-art approaches. As future work, it would be interesting to see if the
above model can be extended to more than two languages. We would also like to apply our model
to other tasks such as cross language information retrieval, cross language subjectivity analysis, etc.
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